Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604427

RESUMEN

This research focused on synthesizing a CdIn2Se4@Ch nanocomposite by doping CdIn2Se4 into chitosan using a photolysis assisted ultrasonic process. The aim was to enhance the photodegradation efficiency of ofloxacin and 2,4-dichlorophenoxyacetic acid under sunlight. The synthesized CdIn2Se4@Ch nanocomposite was investigated via different techniques, including XRD, XPS, FTIR, TEM, DSC, TGA, UV-Vis and PL. The study also investigated the influence of various reaction parameters, including the effects of inorganic and organic ions. The synthesized nanocomposite demonstrated exceptional efficiency, achieving 86 % and 95 % removal rates, with corresponding rate constants of 0.025 and 0.047 min-1. This performance surpasses that of CdIn2Se4 by approximately 1.35 and 2.25 times, respectively. The values of COD were decreased to 78 and 86 % for ofloxacin and 2,4-dichlorophenoxyacetic, while the TOC values decreased to 71 and 84 %, respectively, from their premier values. The improvement in performance is associated with the introduction of CdIn2Se4 into chitosan, resulting in the self-integration of Cd into the catalyst. This creates a localized accumulation point for electrons, enhancing the efficiency of charge separation and further reducing the surface charge of chitosan. Experimental evidence suggests that superoxide and hydroxyl radicals play a significant role in the photodegradation of pollutants. Additionally, the nanocomposite exhibits excellent stability and can be reused up to five times, indicating remarkable stability and reusability of the developed photocatalyst.


Asunto(s)
Quitosano , Nanocompuestos , Ofloxacino , Quitosano/química , Nanocompuestos/química , Ofloxacino/química , Fotólisis , Ácido 2,4-Diclorofenoxiacético/química , Catálisis , Cadmio/química
2.
Environ Sci Pollut Res Int ; 31(20): 29957-29970, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598152

RESUMEN

This study explores the utilization of adsorption and advanced oxidation processes for the degradation of ofloxacin (OFL) and ciprofloxacin (CIP) using a green functionalized carbon nanotube (MWCNT-OH/COOH-E) as adsorbent and catalyst material. The stability and catalytic activity of the solid material were proved by FT-IR and TG/DTG, which also helped to elucidate the reaction mechanisms. In adsorption kinetic studies, both antibiotics showed similar behavior, with an equilibrium at 30 min and 60% removal. The adsorption kinetic data of both antibiotics were well described by the pseudo-first-order (PFO) model. Different advanced oxidation processes (AOPs) were used, and the photolytic degradation was not satisfactory, whereas heterogeneous photocatalysis showed high degradation (⁓ 70%), both processes with 30 min of reaction. Nevertheless, ozonation and catalytic ozonation have resulted in the highest efficiencies, 90%, and 70%, respectively, after 30-min reaction. For AOP data modeling, the first-order model better described CIP and OFL in photocatalytic and ozonation process. Intermediates were detected by MS-MS analysis, such as P313, P330, and P277 for ciprofloxacin and P391 and P332 for ofloxacin. The toxicity test demonstrated that a lower acute toxicity was observed for the photocatalysis method samples, with only 3.1 and 1.5 TU for CIP and OFL, respectively, thus being a promising method for its degradation, due to its lower risk of inducing the proliferation of bacterial resistance in an aquatic environment. Ultimately, the analysis of MWCNT reusability showed good performance for 2 cycles and regeneration of MWCNT with ozone confirmed its effectiveness up to 3 cycles.


Asunto(s)
Ciprofloxacina , Nanotubos de Carbono , Ofloxacino , Oxidación-Reducción , Contaminantes Químicos del Agua , Ciprofloxacina/química , Ofloxacino/química , Nanotubos de Carbono/química , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Ozono/química , Antibacterianos/química , Catálisis
3.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38544002

RESUMEN

Ofloxacin (OFL) is widely used in animal husbandry and aquaculture due to its low price and broad spectrum of bacterial inhibition, etc. However, it is difficult to degrade and is retained in animal-derived food products, which are hazardous to human health. In this study, a simple and efficient method was developed for the detection of OFL residues in meat products. OFL coupled with amino magnetic beads by an amination reaction was used as a stationary phase. Aptamer AWO-06, which showed high affinity and specificity for OFL, was screened using the exponential enrichment (SELEX) technique. A fluorescent biosensor was developed by using AWO-06 as a probe and graphene oxide (GO) as a quencher. The OFL detection results could be obtained within 6 min. The linear range was observed in the range of 10-300 nM of the OFL concentration, and the limit of the detection of the sensor was 0.61 nM. Furthermore, the biosensor was stored at room temperature for more than 2 months, and its performance did not change. The developed biosensor in this study is easy to operate and rapid in response, and it is suitable for on-site detection. This study provided a novel method for the detection of OFL residues in meat products.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Productos de la Carne , Animales , Humanos , Ofloxacino/química , Alérgenos , Aptámeros de Nucleótidos/química , Separación Inmunomagnética , Técnicas Biosensibles/métodos , Técnica SELEX de Producción de Aptámeros/métodos
4.
Environ Pollut ; 347: 123738, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458522

RESUMEN

The pollution of quinolone antibiotics in the marine environment has attracted widespread attention, especially for ofloxacin (OFL) and oxolinic acid (OXO) due to their frequent detection. However, few studies have been conducted to assess the behaviors and microbial community response to these antibiotics in marine sediments, particularly for potential antibiotic-resistant bacteria. In this work, the adsorption characteristics, natural attenuation characteristics, and variation of microbial communities of OFL and OXO in marine sediments were investigated. The adsorption process of antibiotics in sediments occurred on the surface and internal pores of organic matter, where OFL was more likely to be transferred from seawater to sediment compared with OXO. Besides, the adsorption of two antibiotics on sediment surfaces was attributed to physisorption (pore filling, electrostatic interaction) and chemisorption (hydrogen bonding). The natural attenuation of OFL and OXO in marine sediment followed second-order reaction kinetics with half-lives of 6.02 and 26.71 days, respectively, wherein biodegradation contributed the most to attenuation, followed by photolysis. Microbial community structure in marine sediments exposure to antibiotics varied by reducing abundance and diversity of microbial communities, as a whole displaying as an increase in the relative abundance of Firmicutes whereas a decrease of Proteobacteria. In detail, Escherichia-Shigella sp., Blautia sp., Bifidobacterium sp., and Bacillus sp. were those antibiotic-resistant bacteria with potential ability to degrade OFL, while Bacillus sp. may be resistant to OXO. Furthermore, functional predictions indicated that the microbial communities in sediment may resist the stress caused by OFL and OXO through cyano-amino acid metabolism, and ascorbate and aldarate metabolism, respectively. The research is key to understanding fate and bacterial resistance of antibiotics in marine sediments.


Asunto(s)
Microbiota , Ofloxacino , Ofloxacino/química , Ácido Oxolínico , Adsorción , Antibacterianos/toxicidad , Antibacterianos/química , Sedimentos Geológicos/química , Microbiota/fisiología , Bacterias
5.
Adv Mater ; 36(19): e2311939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38275004

RESUMEN

Highly selective and sensitive quantitative detection of ofloxacin (OFX) at ultralow concentrations in aqueous media and development of new afterglow materials remains a challenge. Herein, a new 2D water-stable lanthanide metal-organic framework (NIIC-2-Tb) is proposed, which exhibits high selectivity towards OFX through the luminescence quenching with the lowest detection limit (1.1 × 10-9 M) reported to date and a fast response within 6 s. In addition, the luminescent detection of OFX by NIIC-2-Tb is not affected by typical components of blood plasma and urine. The excellent sensing effect of NIIC-2-Tb is further utilized to prepare a composite functional sensing carrageenan hydrogel material for the rapid detection of OFX in meat in real time and the first discovery of impressive afterglow in MOF-based hydrogels. This study not only presents novel Ln-MOF materials and Ln-MOF-based hydrogel films for luminescent sensing of OFX, but also demonstrates color-tunable luminescent films with afterglow, which expands the application of composite luminescent materials for detection and anti-counterfeiting.


Asunto(s)
Hidrogeles , Estructuras Metalorgánicas , Ofloxacino , Ofloxacino/orina , Ofloxacino/análisis , Ofloxacino/sangre , Ofloxacino/química , Estructuras Metalorgánicas/química , Hidrogeles/química , Luminiscencia , Límite de Detección , Mediciones Luminiscentes/métodos , Terbio/química , Carragenina/química , Metilgalactósidos
6.
J Biomol Struct Dyn ; 42(1): 425-434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37096761

RESUMEN

Fluoroquinolones (FQs) are the most commonly used antimicrobial drugs and regardless of their advantages in the healthcare sector, the pollution of these antimicrobial drugs in the environment has big concerns about human and environmental health. The presence of these antibiotic drugs even at the lowest concentrations in the environment has resulted in the emergence and spread of antibiotic resistance. Hence, it is necessary to remediate these pollutants from the environment. Previously alkaline laccase (SilA) from Streptomyces ipomoeae has been demonstrated to show degrading potentials against two of the FQs, Ciprofloxacin (CIP) and Norfloxacin (NOR); however, the molecular mechanism was not elucidated in detail. In this study, we have analyzed the possible molecular catalytic mechanism of FQ degrading SilA-laccase for the degradation of the FQs, CIP, NOR and Ofloxacin (OFL) using three-dimensional protein structure modeling, molecular docking and molecular dynamic (MD) studies. The comparative protein sequence analysis revealed the presence of tetrapeptide conserved catalytic motif, His102-X-His104-Gly105. After evaluating the active site of the enzyme in depth using CDD, COACH and S-site tools, we have identified the catalytic triad composed of three conserved amino acid residues, His102, Val103 and Tyr108 with which ligands interacted during the catalysis process. By analyzing the MD trajectories, it is revealed that the highest degradation potential of SilA is for CIP followed by NOR and OFL. Ultimately, this study provides the possible comparative catalytic mechanism for the degradation of CIP, NOR and OFL by the SilA enzyme.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiinfecciosos , Norfloxacino , Humanos , Norfloxacino/análisis , Norfloxacino/química , Norfloxacino/metabolismo , Ciprofloxacina , Ofloxacino/análisis , Ofloxacino/química , Ofloxacino/metabolismo , Lacasa/metabolismo , Simulación del Acoplamiento Molecular , Antibacterianos/química , Fluoroquinolonas
7.
Int J Biol Macromol ; 253(Pt 8): 127507, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865378

RESUMEN

The current research attempted to design and evaluate sustained stomach-specific ofloxacin delivery by single-unit hydrodynamically balanced system (HBS)-based floating capsules. These HBS-based floating capsules of ofloxacin were prepared using two oppositely ionic polymers, namely cationic-natured low molecular mass chitosan (LMMCH) and anionic-natured carboxymethyl tamarind gum (CMTG). FTIR results indicated the in situ formation of a polyelectrolyte complex in-between two oppositely charged polymers (i.e., in-between -NH2 group of the cationic natured LMMCH and -COOH groups of the anionic natured CMTG) and the nonexistence of any drug-polymer interaction(s) within these formulated ofloxacin HBS capsules. All these LMMCH-CMTG ofloxacin HBS capsules exhibited drug content uniformity, a sustained in vitro drug-releasing profile over 10 h. The ofloxacin HBS capsules (formulated with 75 mg LMMCH and 25 mg CMTG), which was selected as best formulation (for further studies), exhibited excellent in vitro floatation behaviour in SGF (pH 1.2) over 6 h without any floating lag-time, whereas the same formulation containing barium sulfate (100 mg) instead of drug demonstrated prolonged stomach-specific gastroretention in an in vivo X-ray imaging study using rabbits. Therefore, these types of HBS floating capsules can be useful for stomach-specific gastroretentive floating delivery of other drugs.


Asunto(s)
Quitosano , Tamarindus , Animales , Conejos , Ofloxacino/química , Polielectrolitos , Quitosano/química , Polímeros/química , Preparaciones de Acción Retardada/química , Cápsulas
8.
Chemosphere ; 327: 138525, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990358

RESUMEN

Fluoroquinolones (FQs) are a class of antibiotics with emerging concern. This study investigated the photochemical properties of two representative FQs, i.e., norfloxacin (NORF) and ofloxacin (OFLO). Results showed that both FQs could sensitize the photo-transformation of acetaminophen under UV-A irradiation, during which excited triplet state (3FQ*) was the main active species. In the presence of 3 mM Br‾, the photolysis rate of acetaminophen increased by 56.3% and 113.5% in the solutions with 10 µM NORF and OFLO, respectively. Such an effect was ascribed to the generation of reactive bromine species (RBS), which was verified by 3,5-dimethyl-1H-pyrazole (DMPZ) probing approach. 3FQ* reacts with acetaminophen through one-electron transfer, producing radical intermediates which then couple to each other. Presence of Br‾ did not lead to the formation of brominated products but the same coupling products, which suggests that radical bromine species, rather than free bromine, were responsible for the accelerated acetaminophen transformation. According to the identified reaction products and assisted with the theoretical computation, the transformation pathways of acetaminophen under UV-A irradiation were proposed. The results reported herein suggest that sunlight-driven reactions of FQs and Br‾ may influence the transformation of coexisting pollutants in surface water environments.


Asunto(s)
Fluoroquinolonas , Contaminantes Químicos del Agua , Fluoroquinolonas/química , Bromuros , Acetaminofén , Bromo , Contaminantes Químicos del Agua/análisis , Norfloxacino/química , Ofloxacino/química , Fotólisis
9.
Talanta ; 255: 124216, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36587425

RESUMEN

The current effort introduces a facile construction of peony-like CuO:Tb3+ nanostructure (P-L CuO:Tb3+ NS), whose characterization was determined via techniques of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. We investigated ofloxacin, pefloxacin and gatifloxacin oxidation electrochemically on P-L CuO:Tb3+ NS-modified glassy carbon electrode (P-L CuO:Tb3+ NS/GCE), the results of which revealed the irreversible oxidation of drugs through a two-electron oxidation process. An admirable resolution was found for this modified electrode between voltammetric peaks of ofloxacin, pefloxacin and gatifloxacin, suggesting its appropriateness for simultaneous detection of these drugs in pharmaceutical media. In addition, our nanostructure synergistically influenced the electro-catalytic oxidations of these three compounds. Differential pulse voltammetric measurements of ofloxacin, pefloxacin and gatifloxacin through our sensor showed a limit of detection of 1.9, 2.3 and 1.2 nM a as well as a linear dynamic range between 0.01 and 800.0 µM in phosphate buffered solution (0.1 M, pH = 6.0), respectively. Moreover, as-fabricated sensor could successfully co-detect these drugs in real serum and tablets specimens. In addition, since we use animal foods such as milk it is very important to detect their fluoroquinolone residues. For this purpose, the proposed sensor was tested to determine the residues of ofloxacin, pefloxacin and gatifloxacin in milk.


Asunto(s)
Ofloxacino , Pefloxacina , Ofloxacino/química , Gatifloxacina , Cobre/química , Terbio , Óxidos/química , Electrodos , Técnicas Electroquímicas/métodos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121792, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36088742

RESUMEN

Nano-plastics (NPs), an emerging contaminant in the environment, have a larger specific surface area and can act as a carrier of other contaminants. Thus, insights into the interaction mechanisms between NPs and other pollutants are crucial for the assessment of environmental impacts of NPs in the ecosystems. In this study, the interaction mechanism between NPs and ofloxacin (OFL) were investigated via kinetics, fluorescence quenching, and two-dimensional correlation spectroscopy (2DCOS). The adsorption kinetics of OFL on carboxyl-modified polystyrene (PS-COOH) and amine modified polystyrene (PS-NH2) closely fitted the pseudo-second-order kinetics model (R2 = 0.99). Adsorption kinetics indicated that chemical adsorption is dominant mechanism, and the Fourier Transform Infrared Spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS) results showed that the electronic interaction, π-π, and H-binding were also involved in the adsorption process. OFL showed strong fluorescence quenching in the presence of NPs. Stern-Volmer quenching was negatively related with the temperature, which was dominated by the static type of quenching. 2DCOS indicated that the π-π conjugation was dominant in the interaction process, and the interaction process was dependent on the solution pH and salinity. Overall, this work provides new insights into the interaction mechanism of NPs and antibiotics in the aquatic ecosystems.


Asunto(s)
Ofloxacino , Contaminantes Químicos del Agua , Adsorción , Aminas , Antibacterianos/química , Ecosistema , Cinética , Microplásticos , Ofloxacino/química , Poliestirenos , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
11.
Water Res ; 224: 119024, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099764

RESUMEN

The interaction between microplastics (MPs) and hydrophilic organic contaminants (HOCs) in natural water environment has recently raised great public attentions due to the potential toxicity to humans. However, the quantitative assessment is less studied. In this study, the interaction between ciprofloxacin (CIP) and ofloxacin (OFL) (two important HOCs) and virgin and aged polystyrene (PS) was investigated. The aged PS showed higher adsorption rate and capacity than the virgin PS, due to its larger surface area and more O-containing groups. The pH-dependent adsorption of CIP was higher than OFL on both virgin and aged PS; the maximum adsorption for both HOCs occurred at pH 5. The sequential orders of functional groups for the adsorption were discovered according to the study by the 2D correlation Fourier transform infrared spectroscopy. Several mechanisms existed for the interaction: (1) at 3.0 < pH < 5.0, the electrostatic attraction (EA) was inhibited while H-bond (HB) was dominant, accounting for > 60% of the total uptake; (2) at 5.0 < pH < 8.0, the contribution of EA increased to around 50-60% while HB decreased to 30-40%; (3) at 8.0 < pH < 10.0, EA, HB and π-π conjugation caused 30-40%, 25-40% and 20-45% of the total uptake, respectively; (4) at 10.0 < pH < 12.0, π-π conjugation accounted for 90-100%. Notably, higher adsorption of CIP was mainly attributed to the presence of secondary amino groups and its higher pKa value, correspondingly leading to the additional ordinary HB and negative charge-assisted HB, and EA interactions with PS. This study further provides clear evidences on the risk of MPs and HOCs on humans and aqueous living organisms.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Anciano , Ciprofloxacina/química , Humanos , Ofloxacino/química , Plásticos , Poliestirenos , Agua/química , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 307(Pt 2): 135936, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35934098

RESUMEN

Since ofloxacin (OFX) is one of many common antibiotics, which effluxes into aquatic environment in relatively high concentration, it has become of significant environmental concern due to the potential for increased antibiotic resistance. In this study, an innovative functional Fe/Ni@ZIF-8 composite was successfully used for the Fenton-like oxidation of OFX, with a OFX removal efficiency >98% under optimal conditions. FTIR analysis confirmed that OFX removal occurred via adsorption to Fe/Ni@ZIF-8 by a combination of π-π bond intercalation and electrostatic interaction, while XPS revealed that the Fe/Ni NPs in Fe/Ni@ZIF-8 were also involved in oxidation. Furthermore, LC-MS analysis identified the presence of several OFX degradation products post exposure, which indicted that Fe/Ni NPs in Fe/Ni@ZIF-8 reacted with H2O2 to form •OH, leading to Fenton-like oxidation of OFX. Thus overall, OFX removal by Fe/Ni@ZIF-8 involved both adsorption to ZIF-8 and Fenton-like oxidation by Fe/Ni NPs. A synergistic mechanism for OFX removal by Fe/Ni@ZIF-8 was thus proposed. The removal efficiency of the synthesized catalysts remained high (above 65%) even after a 5th reuse cycle, which reflected the high stability of Fe/Ni@ZIF-8. Overall, this study demonstrated that Fe/Ni@ZIF-8 had significant potential for the removal of OFX from wastewaters with a removal efficiency >90%.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Peróxido de Hidrógeno/química , Ofloxacino/química , Aguas Residuales
13.
J Hazard Mater ; 437: 129374, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35897183

RESUMEN

Multi-wall carbon nanotubes (MWCNTs) with high electrical conductivity are commonly accounted as the ideal additives to enhance the charge surface migration efficiency in photocatalysis. Theoretically, the MWCNTs-modified binary photocatalysts have potential for the change of nanocrystal structure. Herein, we reports an adjustable {312}/{004}facet heterojunction MWCNTs/Bi5O7I nanocomposite. Interestingly, the synergistic effect of {312}/{004}facet heterojunction and MWCNTs can effectively accelerate the spatial charge carriers transport. A novel {312}/{004}facet "S-scheme" pathway was proven to be the dominated pathway for the enhancement of spatial charge carriers. As a result, the MWCNTs-{312}/{004}Bi5O7I composites exhibited superior photocatalytic oxidation efficiency for a representative antibiotics ofloxacin photodegradation. Density functional theory (DFT) calculation and LC-MS/MS analysis confirmed that the possible dealkylation and oxidation pathways could be found in OFL degradation. This work provides novel insights for the relationship between charge carrier transport and facet structure-property.


Asunto(s)
Nanotubos de Carbono , Catálisis , Cromatografía Liquida , Nanotubos de Carbono/química , Ofloxacino/química , Espectrometría de Masas en Tándem
14.
Bioorg Chem ; 118: 105470, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814085

RESUMEN

Mesoporous silica nanoparticles (MNs) emerged as new promising drug-delivery platforms capable to overcome resistance in bacteria. Dual loading of drugs on these nanocarriers, exploiting synergistic interactions between the nanoparticles and the drugs, could be considered as a way to increase the efficacy against resistant bacteria with a positive effect even at very low concentrations. Considering that patients with cancer are highly susceptible to almost any type of bacterial infections, in this work, nanocarriers mesoporous silica-based, MNs and MNs@EPI were synthetized and submitted to single and/or dual loading of antibiotics (ofloxacin - OFLO) and anticancer drugs (Doxorubicin - DOX; Epirubicin - EPI), and investigated regarding their antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Enterococcus faecalis and Pseudomonas aeruginosa. Formulations containing ofloxacin such as MNs-OFLO, MNs-EPI + OFLO, MNs-DOX + OFLO and MNs@EPI + OFLO, present antibacterial activity in all bacterial strains tested. All these are more effective in E.coli with MIC and MBC values for MNs-OFLO, MNs-EPI + OFLO and MNs-DOX + OFLO of around 1 and 2 µgnanomaterial/mL, corresponding to ofloxacin concentrations of 0.03, 0.02 and 0.04 µg/mL, respectively. In the cocktail formulations the conjugation of epirubicin with ofloxacin presents a more effective antibacterial activity with more than 3-fold reduction of ofloxacin concentration when comparing to the single ofloxacin system. By far, the most effective synergistic effect was obtained for the system where epirubicin was functionalized at nanoparticles surface (MNs@EPI), where a 40-fold and 33-fold reductions of ofloxacin concentration were obtained, in P. aeruginosa in comparison to the MNs-OFLO and MNs-EPI + OFLO systems, respectively. These effects are shown in all bacterial strains tested, even in strains that have acquired resistance mechanisms, such as MRSA.


Asunto(s)
Antibacterianos/farmacología , Antibióticos Antineoplásicos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Doxorrubicina/farmacología , Epirrubicina/farmacología , Ofloxacino/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibióticos Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Enterococcus faecalis/efectos de los fármacos , Epirrubicina/química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nanopartículas/química , Ofloxacino/química , Tamaño de la Partícula , Porosidad , Pseudomonas aeruginosa/efectos de los fármacos , Dióxido de Silicio/química , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Propiedades de Superficie
15.
ACS Appl Mater Interfaces ; 13(48): 57000-57008, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34816710

RESUMEN

Porous surfaces have attracted tremendous interest for customized incorporation of functional agents on biomedical devices. However, the versatile preparation of porous structures on complicated devices remains challenging. Herein, we proposed a simple and robust method to fabricate "spongy skin" on diversified polymeric substrates based on non-solvent-induced phase separation (NIPS). Through the swelling and the subsequent phase separation process, interconnected porous structures were directly formed onto the polymeric substrates. The thickness and pore size could be regulated in the ranges of 5-200 and 0.3-0.75 µm, respectively. The fast capillary action of the porous structure enabled controllable loading and sustained release of ofloxacin and bovine albumin at a high loading dosage of 79.9 and 24.1 µg/cm2, respectively. We verified that this method was applicable to diversified materials including polymethyl methacrylate, polystyrene, thermoplastic polyurethane, polylactide acid, and poly(lactic-co-glycolic acid) and can be realized onto TCPS cell culture plates. This NIPS-based method is promising to generate porous surfaces on medical devices for incorporating therapeutic agents.


Asunto(s)
Materiales Biomiméticos/química , Polímeros/química , Animales , Bovinos , Células Cultivadas , Humanos , Ensayo de Materiales , Ofloxacino/química , Tamaño de la Partícula , Porosidad , Albúmina Sérica Bovina/síntesis química , Propiedades de Superficie
16.
Chem Commun (Camb) ; 57(96): 13024-13027, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34807209

RESUMEN

In this study, porous hierarchical bronze/anatase phase junction TiO2 assembled by ultrathin two-dimensional nanosheets was prepared by a novel, green and simple deep eutectic solvent-regulated strategy. Due to its structural features, the TiO2 sample exhibited enhanced photocatalytic activities for multiple kinds of antibiotics, including ofloxacin, ciprofloxacin and chloramphenicol.


Asunto(s)
Antibacterianos/química , Cloranfenicol/química , Ciprofloxacina/química , Ofloxacino/química , Titanio/química , Catálisis , Tamaño de la Partícula , Procesos Fotoquímicos , Porosidad , Propiedades de Superficie
17.
AAPS PharmSciTech ; 22(5): 170, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34085150

RESUMEN

A novel nanofiber insert was prepared with a modified electrospinning method to enhance the ocular residence time of ofloxacin (OFX) and to provide a sustained release pattern by covering hydrophilic polymers, chitosan/polyvinyl alcohol (CS/PVA) nanofibers, with a hydrophobic polymer, Eudragit RL100 in layers, and by glutaraldehyde (GA) cross-linking of CS-PVA nanofibers for the treatment of infectious conjunctivitis. The morphology of the prepared nanofibers was studied using scanning electron microscopy (SEM). The average fiber diameter was found to be 123 ± 23 nm for the single electrospun nanofiber with no cross-linking (OFX-O). The single nanofibers, cross-linked for 10 h with GA (OFX-OG), had an average fiber diameter of 159 ± 30 nm. The amount of OFX released from the nanofibers was measured in vitro and in vivo using UV spectroscopy and microbial assay methods against Staphylococcus aureus, respectively. The antimicrobial efficiency of OFX formulated in cross-linked and non-cross-linked nanofibers was affirmed by observing the inhibition zones of Staphylococcus aureus and Escherichia coli. In vivo studies using the OFX nanofibrous inserts on a rabbit eye confirmed a sustained release pattern for up to 96 h. It was found that the cross-linking of the nanofibers by GA vapor could reduce the burst release of OFX from OFX-loaded CS/PVA in one layer and multi-layered nanofibers. In vivo results showed that the AUC0-96 for the nanofibers was 9-20-folds higher compared to the OFX solution. This study thus demonstrates the potential of the nanofiber technology is being utilized to sustained drug release in ocular drug delivery systems.


Asunto(s)
Resinas Acrílicas/química , Administración Oftálmica , Quitosano/química , Nanofibras/química , Ofloxacino/química , Alcohol Polivinílico/química , Resinas Acrílicas/administración & dosificación , Resinas Acrílicas/farmacocinética , Animales , Antibacterianos/química , Química Farmacéutica/métodos , Quitosano/administración & dosificación , Quitosano/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Nanofibras/administración & dosificación , Ofloxacino/administración & dosificación , Ofloxacino/farmacocinética , Alcohol Polivinílico/administración & dosificación , Alcohol Polivinílico/farmacocinética , Conejos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
18.
Int J Biol Macromol ; 165(Pt A): 902-917, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011256

RESUMEN

Polypropylene (PP) meshes are the most widely used as hernioplasty prostheses. As far as hernia repair is concerned, bacterial contamination and tissue adhesion would be the clinical issues. Moreover, an optimal mesh should assist the healing process of hernia defect and avoid undesired prosthesis displacements. In this present study, the commercial hernia mesh was modified to solve the mentioned problems. Accordingly, a new bi-functional PP mesh with anti-adhesion and antibacterial properties on the front and adhesion properties (reduce undesired displacements) on the backside was prepared. The backside of PP mesh was coated with polycaprolactone (PCL) nanofibers modified by mussel-inspired L-3,4-dihydroxyphenylalanine (L-DOPA) bioadhesive. The front side was composed of two different nanofibrous mats, including hybrid and two-layered mats with different antibacterial properties, drug release, and biodegradation behavior, which were based on PCL nanofibers and biomacromolecule carboxyethyl-chitosan (CECS)/polyvinyl alcohol (PVA) nanofibers containing different ofloxacin amounts. The anti-adhesion, antibacterial, and biocompatibility studies were done through in-vitro experiments. The results revealed that DOPA coated PCL/PP/hybrid meshes containing ofloxacin below 20 wt% possessed proper cell viability, AdMSCs adhesion prevention, and excellent antibacterial efficiency. Moreover, DOPA modifications not only enhanced the surface properties of the PP mesh but also improved cell adhesion, spreading, and proliferation.


Asunto(s)
Quitosano/química , Hernia/tratamiento farmacológico , Nanofibras/química , Ofloxacino/química , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Quitosano/síntesis química , Quitosano/farmacología , Dihidroxifenilalanina/química , Dihidroxifenilalanina/farmacología , Hernia/patología , Herniorrafia/métodos , Humanos , Ratones , Ofloxacino/farmacología , Poliésteres/química , Poliésteres/farmacología , Polipropilenos/química , Polipropilenos/farmacología , Alcohol Polivinílico/síntesis química , Alcohol Polivinílico/química , Prótesis e Implantes
19.
Mikrochim Acta ; 187(10): 583, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32986154

RESUMEN

Bi2WO6 (BW) was compounded with different contents of copper sulfide (CuS) by a two-step procedure. The chemical composition and morphology of the materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results of photoelectrochemical (PEC) tests showed that CuS can improve the PEC performance of semiconductor materials and it has the best performance when the CuS mass fraction is 5%. Therefore, CuS/BW-5% nanocomposite has been constructed as ofloxacin (OFL) drug PEC aptasensors by binding of aptamer receptors. The PEC aptasensor based on CuS/BW-5% has a linear relationship for OFL of 1-12,000 nM and a determination limit of 0.35 nM. Since the photoelectron potential generated by CuS/BW-5% heterojunction reduces the combination of photogenerated electrons and holes CuS/BW-5% has a better photoelectrocatalytic performance. Graphical abstract Schematic presentation of a photoelectrochemical aptasensor based on CuS/Bi2WO6 for the determination of OFL.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Cobre/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Ofloxacino/química
20.
Chemosphere ; 257: 127121, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32512327

RESUMEN

In this paper, a hybrid advanced oxidation process of sonoelectrochemical, in which ultrasound and electrochemical are applied simultaneously, has been used for the degradation of ofloxacin (bio-recalcitrant pharmaceutical pollutant). Response surface methodology based central composite design was applied to understand the parametric effects of ultrasonic power, current density, initial pH, and electrolyte dose. Enhanced ofloxacin degradation was obtained using sonoelectrochemical (≈95%) process in comparison to the electrochemical (≈60.6%) and sonolysis alone (≈7.2%) after 120 min treatment time. Multi-response optimization was used so as to maximize COD removal (70.12%) and minimize specific energy consumption (11.92 kWh (g COD removed)-1)at the optimized parametric condition of pH = 6.3 (natural pH), ultrasonic power = 54 W, current density = 213 A m-2, and Na2SO4 electrolyte dose = 2.0 g L-1. It was revealed that •OH radicals contribute major to the ofloxacin degradation reaction among the other oxidizing agents. Degradation of the ofloxacin followed pseudo-first-order kinetics with a higher reaction rate, which confirmed the synergistic effect of 34% between ultrasound and electrochemical approaches. The degradation pathway of ofloxacin removal was elucidated at optimum condition by the temporal evolution of the intermediate compounds and final products using gas chromatography coupled with mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), high-resolution mass spectroscopy (HR-MS), and Fourier transform infrared spectroscopy (FTIR). Atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) coupled with energy dispersed X-ray (EDX) were used to determine the morphology of electrodes. Operational cost analysis was done based on the reactor employed in the present study.


Asunto(s)
Ofloxacino/química , Contaminantes Químicos del Agua/química , Técnicas Electroquímicas , Electrodos , Cromatografía de Gases y Espectrometría de Masas , Cinética , Ofloxacino/análisis , Oxidación-Reducción , Ondas Ultrasónicas , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...